skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Yinhan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Characterization and prediction of the interactions between engineered nanoparticles (ENPs), proteins, and biological membranes is critical for advancing applications to nanomedicine and nanomanufacturing while mitigating nanotoxicological risks. In this work, we employ a coarse-grained dissipative particle dynamics (DPD) simulation to investigate the interactions among cytochrome c (CytC), lipid bilayers, and citrate-coated gold nanoparticles (AuNPs). We updated the DPD potential to accurately represent binding potentials between molecules, and validated the model relative to an all-atom representation. The DPD simulations successfully replicate experimental observations: CytC facilitates the binding of citrate-coated AuNPs to lipid bilayers composed of 90% dioleoylphosphatidylcholine (DOPC) mixed with 10% stearoylphosphatidylinositol (SAPI) or 10% tetraoleoyl cardiolipin (TOCL) but not to pure 100% DOPC bilayers. In addition, the simulations reveal nuanced differences in binding preferences between CytC, the lipid bilayers, and the ENP, at a scale that is not presently directly observable in experiments. Specifically, we found that the surface coating of the nanoparticles─viz variations in the CytC surface density─affects the protein-mediated binding with the bilayers. Such a molecular-sensitive result underscores the utility of DPD simulations in simulating complex biological systems. 
    more » « less
    Free, publicly-accessible full text available July 18, 2026
  2. Free, publicly-accessible full text available June 3, 2026
  3. Carbon dots (CDs) are emerging as the material of choice in a range of applications due to their excellent photoluminescence properties, ease of preparation from inexpensive precursors, and low toxicity. However, the precise nature of the mechanism for the fluorescence is still under debate, and several molecular fluorophores have been reported. In this work, a new blue fluorophore, 5-oxopyrrolidine-3-carboxylic acid, was discovered in carbon dots synthesized from the most commonly used precursors: citric acid and urea. The molecular product alone has demonstrated interesting aggregation-enhanced emission (AEE), making it unique compared to other fluorophores known to be generated in CDs. We propose that this molecular fluorophore is associated with a polymer backbone within the CDs, and its fluorescence behavior is largely dependent on intermolecular interactions with the polymers or other fluorophores. Thus, a new class of non-traditional fluorophores is now relevant to the consideration of the CD fluorescence mechanism, providing both an additional challenge to the community in resolving the mechanism and an opportunity for a greater range of CD design schemes and applications. 
    more » « less